

Physics and Collision Detection

Alan Hazelden

http://www.draknek.org/

http://www.draknek.org/

Required knowledge

 Basic physical concepts
 Velocity
 Acceleration
 Mass
 Forces

 Basic geometrical concepts
 Vectors
 Matrices

Definitions

ConcaveConvex

Definitions

 Impulse
 An instantaneous force

 Moment
 Component of a force that affects rotation

 Rotation ≠ Orientation
 Rotation = Angular velocity

Games and physics

 How do games use physics?

Games and physics

 How do games use physics?
 Preventing interpenetration of objects

 One good approach:
 Detect that objects are colliding
 Do something about it

Collision detection

 Massively important
 Needs to be efficient
 Needs to be accurate

 But only to a certain extent

Simplification

 We don't perform collision detection on the
rendering geometry.

2D primitives

 Circle
 Line
 Rectangle
 Capsule
 Convex polygon

3D primitives

 Sphere
 Line
 Cuboid (aka box)
 Cylinder
 Capsule
 Convex polyhedra

Containment

 Does this shape contain this point?

 Circles: test distance from centre
 Axis-aligned rectangles: check x/y coordinates
 Oriented rectangle: first convert point to local

coordinate system

Containment within a polygon

 Basic idea: draw an infinite line from the point in
any direction
 Count the number of times it crosses an edge
 Two different ways of counting

 Give different results for some polygons

Convex polygons

 Can be represented as the intersection of a set
of half-spaces

 To check containment, check against each half-
space in turn
 If outside any, then outside the convex polygon
 If inside all, then inside the convex polygon

Collision detection

 Are these shapes overlapping?
 Easiest with circles/spheres:

 Colliding if r
1
 + r

2
 > d

 Note: Equivalent to containment of a point within a
circle of radius r

1
 + r

2

d

r
1

r
2

d

r
1

r
2

Collision of moving circles

 We can represent this as
the intersection of a line and
a circle

 We can even get the time of
collision!
 Note: usually we don't need

this

Axis-aligned boxes

Separating Axis Theorem

 If separated along some axis, not colliding
 If overlapping along all possible axes, colliding

Separating Axis Theorem

 Key observation: can enumerate the possible
separating axes

 For axis-aligned 2D boxes, only two (x and y)
 For oriented 2D boxes, only four (two per box)
 What about more complicated shapes?

Collision culling

 Brute force collision testing would take O(n2)
comparisons

 We can rule some collisions out very quickly
 Bounding boxes
 Exploiting temporal coherence

 If we have a separating axis for two objects, it is likely to
still be a separating axis in the next frame

Broad-phase collision detection

 Exploits spatial coherence
 Whatever that means

 Regular grid
 Quadtree/Octree
 BSP tree (binary space partitioning)
 Hierarchy of bounding shapes

Collision Resolution

 Once we've found a collision, what do we do?

 Information needed:
 Contact normal
 Contact point
 Penetration distance

 This is all found by the Separating Axis test!

Collisions without rotation

 Impulse applied at the instant of collision
 In the direction of the collision normal

 Change in velocity determined by:
 Coefficient of restitution
 Conservation of momentum

 Better way: calculate magnitude of the impulse
 Only use coefficient of restitution
 Conservation of momentum automatically satisfied

by balanced impulses

Collisions with rotation

 Impulse is applied at the point of contact
 This will affect rotation

 Also: rotation affects approach speed
 We want the approach speed of the contact points

 How does an impulse affect rotation?
 Moment of inertia

Friction

 Perpendicular to the contact normal
 Opposes motion
 F=R

Friction

C
on

ta
ct

Friction

 Friction is a force, not an impulse
 But I treat it like one anyway
 Applied at the end of the frame, after contact force

Penetration

 Overlapping objects
 If we resolved contact forces at the instant of

collision, this shouldn't happen
 But we only ever apply these at the end of a frame

 Need to nudge objects so they stop colliding
 But there could be many objects in a group
 One approach: keep collisions in a list

 Sort list by penetration distance

General overview

 Every frame:
 All objects are moved simultaneously
 The collision detection system is run

 Every pair of colliding objects is detected and stored
 The collision resolver is run

 Velocities are updated
 Penetration is removed

 All objects are drawn at their new positions

Movement of objects

 First-order Euler integration
 x += v * t;
v += a * t;

 Not good

 Second-order Euler integration
 Based on SUVAT equations
 x += v * t + 0.5 * a * t * t;
v += a * t;

 Works, assuming constant acceleration
 Unfortunately, springs and other constraints don't fit this

References

Real-Time Collision Detection
Christer Ericson

References

Game Physics
David Eberly

Game Physics Engine Development
Ian Millington

Online resources

 Erin Catto
 http://www.gphysics.com/

 Glenn Fiedler
 http://www.gaffer.org/game-physics

 Wikipedia

http://www.gphysics.com/
http://www.gaffer.org/game-physics

Existing 2D physics engines

 Box2D (C++)
 http://www.box2d.org/

 Chipmunk (C)
 http://wiki.slembcke.net/main/published/Chipmunk

 Farseer (XNA)
 http://www.codeplex.com/FarseerPhysics

 My third year project (C++ and WGD-Lib)
 http://www.draknek.org/physics/

http://www.box2d.org/
http://wiki.slembcke.net/main/published/Chipmunk
http://www.codeplex.com/FarseerPhysics
http://www.draknek.org/physics/

Existing 3D physics engines

 Bullet
 http://www.bulletphysics.com/

 Open Dynamics Engine
 http://www.ode.org/

 Havok
 http://www.havok.com/tryhavok

http://www.bulletphysics.com/
http://www.ode.org/
http://www.havok.com/tryhavok

Questions?

