

Physics and Collision Detection

Alan Hazelden

http://www.draknek.org/

http://www.draknek.org/

Required knowledge

 Basic physical concepts
 Velocity
 Acceleration
 Mass
 Forces

 Basic geometrical concepts
 Vectors
 Matrices

Definitions

ConcaveConvex

Definitions

 Impulse
 An instantaneous force

 Moment
 Component of a force that affects rotation

 Rotation ≠ Orientation
 Rotation = Angular velocity

Games and physics

 How do games use physics?

Games and physics

 How do games use physics?
 Preventing interpenetration of objects

 One good approach:
 Detect that objects are colliding
 Do something about it

Collision detection

 Massively important
 Needs to be efficient
 Needs to be accurate

 But only to a certain extent

Simplification

 We don't perform collision detection on the
rendering geometry.

2D primitives

 Circle
 Line
 Rectangle
 Capsule
 Convex polygon

3D primitives

 Sphere
 Line
 Cuboid (aka box)
 Cylinder
 Capsule
 Convex polyhedra

Containment

 Does this shape contain this point?

 Circles: test distance from centre
 Axis-aligned rectangles: check x/y coordinates
 Oriented rectangle: first convert point to local

coordinate system

Containment within a polygon

 Basic idea: draw an infinite line from the point in
any direction
 Count the number of times it crosses an edge
 Two different ways of counting

 Give different results for some polygons

Convex polygons

 Can be represented as the intersection of a set
of half-spaces

 To check containment, check against each half-
space in turn
 If outside any, then outside the convex polygon
 If inside all, then inside the convex polygon

Collision detection

 Are these shapes overlapping?
 Easiest with circles/spheres:

 Colliding if r
1
 + r

2
 > d

 Note: Equivalent to containment of a point within a
circle of radius r

1
 + r

2

d

r
1

r
2

d

r
1

r
2

Collision of moving circles

 We can represent this as
the intersection of a line and
a circle

 We can even get the time of
collision!
 Note: usually we don't need

this

Axis-aligned boxes

Separating Axis Theorem

 If separated along some axis, not colliding
 If overlapping along all possible axes, colliding

Separating Axis Theorem

 Key observation: can enumerate the possible
separating axes

 For axis-aligned 2D boxes, only two (x and y)
 For oriented 2D boxes, only four (two per box)
 What about more complicated shapes?

Collision culling

 Brute force collision testing would take O(n2)
comparisons

 We can rule some collisions out very quickly
 Bounding boxes
 Exploiting temporal coherence

 If we have a separating axis for two objects, it is likely to
still be a separating axis in the next frame

Broad-phase collision detection

 Exploits spatial coherence
 Whatever that means

 Regular grid
 Quadtree/Octree
 BSP tree (binary space partitioning)
 Hierarchy of bounding shapes

Collision Resolution

 Once we've found a collision, what do we do?

 Information needed:
 Contact normal
 Contact point
 Penetration distance

 This is all found by the Separating Axis test!

Collisions without rotation

 Impulse applied at the instant of collision
 In the direction of the collision normal

 Change in velocity determined by:
 Coefficient of restitution
 Conservation of momentum

 Better way: calculate magnitude of the impulse
 Only use coefficient of restitution
 Conservation of momentum automatically satisfied

by balanced impulses

Collisions with rotation

 Impulse is applied at the point of contact
 This will affect rotation

 Also: rotation affects approach speed
 We want the approach speed of the contact points

 How does an impulse affect rotation?
 Moment of inertia

Friction

 Perpendicular to the contact normal
 Opposes motion
 F=R

Friction

C
on

ta
ct

Friction

 Friction is a force, not an impulse
 But I treat it like one anyway
 Applied at the end of the frame, after contact force

Penetration

 Overlapping objects
 If we resolved contact forces at the instant of

collision, this shouldn't happen
 But we only ever apply these at the end of a frame

 Need to nudge objects so they stop colliding
 But there could be many objects in a group
 One approach: keep collisions in a list

 Sort list by penetration distance

General overview

 Every frame:
 All objects are moved simultaneously
 The collision detection system is run

 Every pair of colliding objects is detected and stored
 The collision resolver is run

 Velocities are updated
 Penetration is removed

 All objects are drawn at their new positions

Movement of objects

 First-order Euler integration
 x += v * t;
v += a * t;

 Not good

 Second-order Euler integration
 Based on SUVAT equations
 x += v * t + 0.5 * a * t * t;
v += a * t;

 Works, assuming constant acceleration
 Unfortunately, springs and other constraints don't fit this

References

Real-Time Collision Detection
Christer Ericson

References

Game Physics
David Eberly

Game Physics Engine Development
Ian Millington

Online resources

 Erin Catto
 http://www.gphysics.com/

 Glenn Fiedler
 http://www.gaffer.org/game-physics

 Wikipedia

http://www.gphysics.com/
http://www.gaffer.org/game-physics

Existing 2D physics engines

 Box2D (C++)
 http://www.box2d.org/

 Chipmunk (C)
 http://wiki.slembcke.net/main/published/Chipmunk

 Farseer (XNA)
 http://www.codeplex.com/FarseerPhysics

 My third year project (C++ and WGD-Lib)
 http://www.draknek.org/physics/

http://www.box2d.org/
http://wiki.slembcke.net/main/published/Chipmunk
http://www.codeplex.com/FarseerPhysics
http://www.draknek.org/physics/

Existing 3D physics engines

 Bullet
 http://www.bulletphysics.com/

 Open Dynamics Engine
 http://www.ode.org/

 Havok
 http://www.havok.com/tryhavok

http://www.bulletphysics.com/
http://www.ode.org/
http://www.havok.com/tryhavok

Questions?

